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A Simple, Nearly Perfectly Matched Layer for
General Electromagnetic Media

Steven A. Cummer, Senior Member, |EEE

Abstract—A new implementation of the perfectly matched
layer (PML) absorbing boundary condition is presented. This
formulation isdesigned such that the partial differential equations
in the PML are identical to those in the regular medium for
any linear electromagnetic material. This makes this method
particularly smple to implement, especially in dispersive and
anisotropic materials. We call this method the nearly perfectly
matched layer (NPML) because it employs variable changes that
are not strictly exact when the PML conductivity is spatially
variant. Comparisons with the convolutional PML in a Lorentz
dielectric show that the NPML is as effective an absor ber as exact
PML formulations.

Index Terms—Absorbing boundary condition,
matched layer (PML).

perfectly

|. INTRODUCTION

INCE the publication of Berenger’ soriginal split-field per-

ectly matched layer (PML) [1], this highly effective ab-
sorbing boundary condition has been adapted in a variety of
ways. Alternate PML formulations have been reported [2], [3],
[4] that all have similar broadband absorbing performance and
efficiency asthe original PML. Formulations have al so been de-
rived that are effective broadband absorbers for more than just
the simple dielectrics of the original PML [5], [6], [7].

We report here a PML formulation that, like others [6], [7],
is sufficiently general to be applied to essentially any linear
medium, either conducting, dispersive, anisotropic, or with a
combination these properties. The formulation presented here
has some advantages over previous formulations, particularly
in ease of implementation. It also has some disadvantages that
do not appear to affect its performancein practice. We call it the
nearly perfectly matched layer (NPML) for reasons described
below.

The fundamental NPML partia differential equations are ex-
actly the same as those in the simulation space for any linear
material. For simple dielectrics, thisis not an important advan-
tage. But for acomplicated material, particularly an anisotropic
one, explicit time-centered finite difference equations can be te-
dious to derive because all of the equations must be solved si-
multaneously. Any additional variables that appear in the PML
partial differential equations require a rederivation of the full
difference system. With the NPML, the difference equations for
the PML region can be copied exactly from the regular medium,
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independent of the differencing scheme used. Only simple or-
dinary differential equations need to be added to complete the
NPML field equations.

The NPML is aso based purely on differential equations (as
opposed to convolutional approaches). It can, thus, be applied
directly and ssimply to any class and order of finite difference
approximation. Applying the NPML to cylindrical and spher-
ical coordinate systems is also straightforward [8]. The com-
putational efficiency of the NPML is the same as the convolu-
tional PML (CPML) [7] and essentially the same as other PML
formulations. Modified PML formulationslike the complex fre-
guency shifted (CFS) PML [9] can be also implemented within
the NPML framework.

This method has some differences from other PML formu-
lations that do not appear to be of practical importance. The
NPML, liketheoriginal split-field and many other formulations,
isonly weakly well-posed [10]. Although weak well-posedness
can, in theory, lead to instability, this does not occur in practice
under ordinary circumstances.

Theoretically, NPML isperfectly matched for all incident an-
gles only when the PML conductivity is spatially invariant. For
practical reasons, PML conductivity is always implemented in-
homogeneously and the NPML is not strictly exact. For this
reason, we call this method the nearly perfectly matched layer.
We note that other PML formulations have been reported and
found effective that are similarly inexact for spatially varying
PML conductivity [11]. We show in simulations below that this
imperfection is not significant and that it performs as an ab-
sorbing boundary condition (ABC), aswell asastrictly perfectly
matched layer. Thisisnot surprising since numerical discretiza-
tion, not theoretical exactness, keepsthe PML from being a per-
fect ABC. We surmise that NPML performanceislimited by the
same numerical issues, not the dightly inexact formulation.

II. DERIVATION

The NPML is based on the standard stretched coordinate
PML formulation [12] but deviates with the goal of preserving
the same fundamental form for the PML partia differential
equations. As an example, consider the two-dimensional
(2-D) TM Maxwell’s eguations, assuming Jd/dy = 0 and an
exp(jwt) time variation, which include material responses
through current density ./ and magnetization A/
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Essentially, all complicated materials (such as simple conduc-
tors, plasmas, and dispersive electric or magnetic materials) fit
this model where ordinary differential equations relate magne-
tization M with magnetic field H, and electric current density
J with electricfield E [13] (recall that electric current density J
and electric polarization P are equivalent through J = 0P/dt).
Although the electromagnetic properties of most materials are
commonly expressed in the frequency domain, this frequency
domain relationship is originally derived from a time domain
model. For anisotropic materials, M and J (or ) may be func-
tions of non-TE fields, and handling them with this method
would simply require including the equations for al field com-
ponents.

To derive a PML that absorbs waves propagating in the
+z direction, we apply complex coordinate stretching [12]
in which 9z = 8z = (1+4o0.(2)/jw)dz Applying this
coordinate change to (1)—«3) and redefining some variables
gives the system of eguationsin real coordinates
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In other words, (%) denotes multiplication of the physical fields
by the stretched coordinatefactor (1 4 o /jw) ™. Thisvariable
change is not strictly correct if o, is z-dependent. However,
we show with simulations below that this approximation does
not substantially affect the NPML performance, and it can be
shown that for normal PML parameters, the layer is very close
to perfectly matched. This will be analyzed in detail in future
work.

Note that with the redefinition of the stretched (%) variables,
the PML partia differential equations (4)—6) arein exactly the
same form as the medium equations (1)—3).

It is simple to transform this system to the time domain,
where they must be coupled to the ordinary differential equa-
tions (ODEsS)
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to connect the stretched and unstretched fields. The system is
completed by additional ODEsrelating A/ and H and/or J and
E that model the specific materia response (as shown by the
specific example below).

IIl. PROPERTIES OF THE NPML

Additional variables have been added to the higher order
terms in the partia differential equation (PDE) system. This
implies weak well-posedness of the system [10], a property
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that many PML formulations have. Although this can cause
instability in theory, it does not appear to be an issue of prac-
tical importance in ordinary problems. The NPML equations
are PDEs and ODEs, and, thus, can be approximated by any
class (second order, higher order, explicit, implicit) of finite
difference technique.

The PDEs in the NPML system will aways be in exactly
the same form as Maxwell’ s equations in the physical medium,
with no additional terms. This means that, independent of dif-
ferencing scheme, the partia difference equations and coeffi-
cients for the NPML can be simply copied from those in the
non-PML region. Only afew simple ODEs of asingleform[i.e.,
(8) and (9)] must be added to complete the NPML. This makes
the NPML simple to implement for any material. NPML for-
mulations of PML variants, like the complex frequency shifted
PML [9], are also easy to derive. Only the NPML ODEs change
form.

The derivation above shows explicitly how to generate the
NPML method for single direction attenuation in Cartesian
coordinates. For corner regions, multiple coordinate directions
must be stretched simultaneoudly, but this is straightforward.
For cylindrical or spherical coordinates, coordinate stretching
as described in [8] can easily be applied. These more compli-
cated cases will result in more auxiliary variables and ODES
but are fundamentally similar to the derivation above.

IV. EXAMPLE AND DEMONSTRATION

To show the effectiveness of the NPML, we model 2D Carte-
sian (9/0y = 0), linearly polarized TM wave propagation in a
Lorentz (resonant) dispersive dielectric. The field equations in
such a material are
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where v, wg, and F' are parameters of the dispersive dielec-
tric. Following the NPML derivation procedure, the z-absorbing
NPML equations are

. 8£y _ a(ir B a;iz B a;zy 1

aab: Y v o E, = % (15)

a;gy +v % +wiPy =FWiE, (16)
o e OF, )

M yo.it, =2 18)

o 22— OBy (19)




130 IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 13, NO. 3, MARCH 2003

Lorente sample
dielectric 45,50}
-
10 layer "
PML "y
source
(0.0

.
i

electric field

i
: ‘r'

T2 s 4 5 & 7

1 |
..180cels )

PML reflection
amplitode

.
0 10 20 30 40 50
frequency (GHz)

Fig. 1. Top left panel: simulation geometry. Top right panel: electric field
waveform after propagation through the Lorentz dielectric described in the
text. Bottom panel: overall reflection coefficient magnitude in the Lorentz
dielectric of the NPML and the CPML with parameters described in the text.
ABC performance is similar.

The resulting system contains the medium PDE/ODE equations
(10)—(13), two extravariables, and two extraODEs. These equa-
tions are listed in the order needed to implement an explicit fi-
nite difference approximation. At this point, any finite differ-
ence scheme (standard second order leapfrog or higher order)
could be used to approximate these equations. The z-absorbing
and corner NPML equations are similar, with different or addi-
tional extra variables but aways the same PDE system.

Tovalidatethe NPML performance as an absorbing boundary
condition, these 2-D equations were discretized using the stan-
dard second order leapfrog scheme, placing £ and P at in-
teger time steps, and H and J = 9P/d¢ at half time steps.
A 28-ps (e~ full width) Gaussian electric-field pulse is ex-
cited at the center of a domain composed entirely of Lorentz
dielectric with parameters F = 2, wg = 27 x 10'° s71, and
v =3 x 10® s7*. The discretization parameters are At = 2.33
psand Az = 1.0 mm.

The simulation geometry is shown in the upper left panel of
Fig. 1. The electric field waveform at the simulation edge was
recorded in two simulations with ten cell NPML and CPML
layers just beyond the sampled point. A much larger reference
simulation produced the no-reflections signal to which theseare
compared. The top right panel of Fig. 1 shows the reference
field waveform for perspective. The NPML parameters were
Omax = 3.5 x 10*? and o(2) x z*? and the CPML param-
eters Were o, = 1.0 x 1012 and o(2) o« 232, The different
PML parameters were necessary to make the PMLs closeto op-
timal and perform similarly.

The bottom panel shows the magnitude of the PML reflection
coefficient as afunction of frequency, defined as FFT (Epm1 —
Eret)/FET(Eum). Note that this coefficient includes reflec-
tions from al of the boundaries, not just the one nearest to
the sample point. The NPML and CPML are comparably ef-
fective for the frequency-dependent propagation in a resonant
dielectric, with a reflection coefficient of —80 to —90 dB over

the most of the incident pulse bandwidth in a ten-layer PML.
Reflections are somewhat higher near the dielectric resonance
for both methods, but, practicaly, thisis not especialy impor-
tant because this frequency range is strongly attenuated for the
chosen dielectric parameters.

Most importantly, this simulation shows that the NPML,
which is particularly easy to implement but not quite exact,
performs as well as the exact CPML. This indicates that the
details of the numerical implementation, rather than the exact-
ness of the analytical formulation, dominate the performance
when the PML layers are nearly optimal. We conclude that the
NPML is effective, versatile, and simple to apply to any linear
electromagnetic material. Further analysisis needed to examine
in detail its performance under a wider variety of conditions
and materials.
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